How to model objects with Tracker and GeoGebra

César Llata, Zaira Ortiz-Laso and José M. Diego-Mantecón (ortizz@unican.es)

Universidad de Cantabria

HOW TO DOWNLOAD TRACKER

Tracker (Video Analysis and Modeling Tools for Physics Education) is available in the following link

© Tracker
 Video Analysis and Modeling Tool

https://physlets.org/tracker/

PROBLEM

"Determine the maximum height that a ball reaches when we throw it into the air"

MODELLING THE TRAJECTORY

- Recording a video of the physical phenomenon.
- Obtaining mathematical information from the video using the Tracker program.
- Finding the curve equation that describes the movement.

Thus, Tracker allows obtaining measurements and equations just with a video

USING TRACKER

RECORDING A VIDEO WITH METRIC REFERENCES TO IMPORT IT INTO THE TRACKER

In this case, we will employ the following video that you can find in Google Drive (tallertracker2023@gmail.com; tracker2023\$)

Aspects to be considered

- Record the video with good contrast and background
- Record from the parallel plane and perpendicular focus
- Have a reference object that we can measure

USING TRACKER

TRACKER INTERFACE AND VIDEO LOADING, ADJUSTING THE DESIRED START AND END WITH THE SLIDERS

USING TRACKER

TRACKER INTERFACE AND VIDEO LOADING, ADJUSTING THE DESIRED START AND END WITH THE SLIDERS

Adjusting the beginning and the end

USING TRACKER

CALIBRATION ROD, TO GIVE METRIC SCALE TO THE VIDEO

USING TRACKER

COORDINATE AXES, TO LEAVE THE ORIGIN AND THE X AND Y AXES ORIENTED

USING TRACKER

IDENTIFY THE POINT MASS OF THE MOVING OBJECT

Video	Trayectorias	Sistema de Coordenadas
	Nuevo	Masa Puntual
Cuadrícula ∇ posición	Centro de Masa	
		Vector

We use the key combination: Ctrl + Shift [佗] + Left mouse button

- Circle: search pattern
- Square: search area

FIND THE TRAJECTORY OF POINTS

- Find the path of points [Buscar] to generate the points
- It is usually automatic, but if at any time the object is not detected, search for the trajectory with the following:

USING TRACKER

IDENTIFIED DATA

You can identify the points detected in the video frames:

- You can select which data to see
- You can choose which graphs to display

USING TRACKER

EXPORT DATA

Export the data to Excel or GeoGebra by selecting the data in the spreadsheet and, with the Right Button of the mouse, giving Copy with Total Precision:

OBTAIN THE CURVE OF THE TRAJECTORY

Mathematical modelling to obtain the curve equation that best fits the trajectory of the object:

- With the right button, we click on the data or a graph and choose "Analyze", selecting the "Type of Adjustment".

Visualizaciä ${ }^{3}$ n \quad Ayuda

USING TRACKER

The parabolic movement, also known as an oblique throw, consists of throwing a body with a speed that forms an angle a with the horizontal. The equation $y(t)$ is:

$$
y=y_{0}+v_{0} \cdot \sin (\alpha) \cdot t-\frac{1}{2} \cdot g \cdot t^{2}
$$

As $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the coefficient A of the parabola is expected to be -4.9.

In our case, $A=-4,81$

USING TRACKER

SOLVING OUR INITIAL PROBLEM (OBTAINING THE MAXIMUM HEIGHT)

It can be seen how at the vertex of the parabola, where the maximum height is reached, the v_{y} component of the velocity is zero (in our case, almost zero -0.02706)

Thank you

