Project-Based Learning: A didactic guide in the example of teaching the golden ratio in the STEAM APPROACH

PROJECT

PROJECT ACRONYM	STEAMTeach
PROJECT TITLE	STEAM Education for Teaching Professionalism
PROJECT REFERENCE	$2020-1-E S 01-$ KA201-082102
START DATE	$1^{\text {st }}$ October 2020
KEY ACTION	Cooperation for innovation and the exchange of good practices
ACTION TYPE	Strategic Partnerships for school education

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

This project has been co-funded by the Erasmus+ programme of the European Union under grant no. 2020-1-ES01-KA201-082102.

Project-Based Learning

A didactic guide in the example of teaching the golden ratio in the STEAM approach

Authors Dr. STONAWSKI Tamás
STEAM areas
Math, physics, art
Cross-cultural connections

Golden ratio, the unique and inspiring proportion. Different cultures have different ideas about beauty and the right proportions. How beautiful and proportional are we?

Summary

Subject Mathematics
Topic Quadratic equation
Ratios
Averaging
Age of students $\quad 14-20$ years
Project time 8×45 minutes
Number of 8-10 students
participants
Online - Rectangle pageant - judging and ranking rectangle contestants
teaching - Rectangle reconstruction (extending rectangles until they become
material golden rectangles)

- Measuring the ration of the height of the naval and other body parts to the height of the body

- Measuring proportions of the face and works of art, assessing results

Offline Stonawski, Tamás
teaching
material
Az aranymetszés az európai festészetben
In: Juhász, András; Tél, Tamás (szerk.) A fizika, matematika és művészet találkozása az oktatásban, kutatásban : Nemzetközi konferencia magyarul tanító tanárok számára

Budapest, Magyarország : ELTE TTK (2013) 351 p. pp. 89-96. , 8 p.

Stonawski, Tamás

Az aranymetszés és más arányok: a tudomány és a művészet kölcsönhatása FIZIKAI SZEMLE 71:7-8 pp. 262-266., 5 p. (2021)

21st century	- Innovation
competences	- Creativity
	- Problem-solving
	- Analytical thinking
	- Active learning
	- ICTitical thinking
	- Cooperative skills
Learning	- Acquiring discipline-related knowledge
objectives	- In-depth understanding of topic
	- Assisting the formation of learning communities
	- Developing manual skills
	- Developing abstract thinking skills

Project Plan

Procedure
Who discovered the golden ratio and what did they use it
for?

Discuss Who used the same ratio in other fields later? questions

Where does Φ come from?
How is Fibonacci related to the golden ratio? Does his name have anything to do with the golden ratio?

Who named this proportion golden ratio or divine proportion?

Who assumed a scientific connection with aesthetics and who measured it first?

What manifestations of the golden ratio can be found in nature?

What is the formula for the quadratic equation?
How do you calculate averages and deviation?
Is there a connection between beauty and proportion?
Can we assign a special proportion to beauty? If yes, how can we can reach such a decision?

Collecting students' ideas 10 minutes proportions

Constructing a golden spiral rectangles but it is not too close.

Predict

Plan

Explore

Demonstrating various ways of employing golden ratio

Constructing a golden ratio-template, the significance of the golden ratio-template, see below.

Finding the ideal proportion by changing the proportions of

Using a rubber band to check the position of the navel and other dominant body proportions

Lay a golden ratio-template over photos using Power Point.
There is connection between the golden ratio and aesthetics

Applying previously acquired mathematical concepts and skills, we can investigate the connection between the golden ratio and aesthetics

The focus of the project is to have students chart the laws of physics. Their exploration based on hands-on, minds-on learning leads to a deeper and more lasting knowledge

Students compare their results with their preliminary
30 minutes assumptions and formulate their experience.

Record

Why do assumptions and experience differ?
Is golden ratio a special proportion?
Reflect
How is it mathematically different from other ratios?
Where can you apply this knowledge?

Measurement results are recorded in a table and visualized on graphs including figures related to averages and deviation.

Findings are summarized in a presentation. Results and the learning process are published in school papers or journals.

Reconstructed rectangles, rubber bands suitable to measure various items in the future. A golden ratio-template accessible in a digital format for later use enabling students to investigate their own photos, images and works of art available on the web.

PPTs
Docx documents
Videos
Give the students enough time to re-plan the processes and modify their report

Re-design

Stations

Science station

Science includes thinking, observation and experiments. It is important to formulate assumptions and share experiences. Formulating and answering questions related to the visuality and the proportions of the world.

Collecting and recording data.

Tools

- Paper cubes
- Notepads
- Calculators
- Pens

Research station

Unguided explorations in the world of the golden ration and body proportions, e.g. Where is the body divided according to the golden ratio? Why bank cards are made in the shape of a special rectangle?

What does sense of beauty mean?

Tools

- Ipads
- Books
- Maps
- Encyclopaedias
- Tablets
- Computers
- Fiction and non-fiction books

Technology station

Engineering station

Art and Design station

Maths station

Recording
station

Electronic technology

- Computers
- Tablets
- Smartphones
- Smartboards
- Digital camera

Non-electronic technology

- Scissors
- Paper clips
- Cardboard
- Measuring tapes
- Rubber bands
- Felt tip pens

Engineering tools and materials

- Paper clips
- Cardboard
- Measuring tapes
- Rubber bands
- Felt tip pens

Art and design supplies

- Paint
- Scissors
- Cardboard

Maths tools

- Calculators
- Rulers
- Flashcards
- Pens

Experiences At the end of the project, joint assessment of experience, discussion of further ideas and future plans
https://diakoffice-
my.sharepoint.com/:p:/g/personal/stonawski_sulid_hu/EaCk9TNXPdRDg4_-Pw1ZyDMB3Lcmc-22BL16IU yoaezeA?e=YMJWrq
https://diakoffice-
my.sharepoint.com/:p:/g/personal/stonawski_sulid_hu/EffjFNSvn8ZDkHP8q-BLMK4BhdgRKmu-YP3TexuPUPiRvA?e=L15uLl
https://diakoffice-
my.sharepoint.com/:p:/g/personal/stonawski sulid hu/ERIbr37Wp2dLoI7miRXmfABjwHPs5MLnfsu5nDId0Rbsg? $=$ =mLx7DV
https://diakoffice-
my.sharepoint.com/:p:/g/personal/stonawski sulid hu/EYI6zjhIAytFqb1Xyjnmq esBKBiUaGzsKjaStJhORc6Ecg?e=lo2PBy

Videos

Mi az az aranymetszés? [What is the golden ratio?]https://www.youtube.com/watch?v=orTnieSPMIs

The Mystery of the Golden Ratio https://www.youtube.com/watch?v=CY3kr5L-Nso

The Golden Ratio (why it is so irrational) - Numberphile https://www.youtube.com/watch?v=sj8Sg8qnjOg

Discussion

- Discussion of assumptions and questions, their verification or rebuttal

Group work

- Assigning preparatory tasks to groups 2-3
- Assigning tasks to groups
- Crafting the product in small groups
- Preparing group presentations

Experiments

- Rectangle pageant - judging and ranking rectangle contestants
- Rectangle reconstruction (extending rectangles until they become golden rectangles)
- Measuring the ration of the height of the naval and other body parts to the height of the body
- Measuring proportions of the face and works of art, assessing results

