InOVative Finnish Institute Tearning For Educational \quad Research
 Environments

ㄷ is a research and education group that focuses on the advancement of children's and young people's 21st Century Skills. The field includes especially user-driven design and study of learning technologies and spaces for enhancement of learning and wellbeing, analyses of innovative teaching and learning practices, technology-enhanced learning, and evaluation and comparison of ICT use in education. When applicable, the research can also be directed to other phases of human life for the study of citizen's knowledge society capabilities.
Team members

Mondrian Art Puzzles

Piet Mondrian was a Dutch painter who is now considered one of the great artists of the 20th century [1]. Among his other works, some of Mondrian's art had a unique, geometric style that (no surprise) attracted the eyes and minds of mathematicians. His art looked a little something like this:

From the clashing of two worlds, math and art, the "Mondrian art puzzle" was born: a fun, creative, and colorful math activity built for almost any age!

Art \& Mathematics

Merging art with mathematics was a natural process for Piet Mondrian to visualize the essential, pure beauty and balance.

Oliver Byrne's 1847 edition of Euclid's Elements

Art \& Mathematics

Mondrian's artistic evolution from figural painting to geometrical imagery was a spiritual journey and an intellectual effort. The goal was to discover the structure beneath the surface and to highlight the profoundly significant.

Evolution

The Large Nude

Pier and Ocean

Art \& Mathematics

Mondrian's systematically implemented grids and the "primary colors" - red, blue, yellow, and white - express the "universal forces" of his vision of art and reality.

Composition 1916

Composition with Grid 6

Solution of a puzzle

Mondrian: New York City I.
Mondrian: Composition A

How it started?

The original idea of Mondrian Blocks is created by Prof. Dr. Laszlo Mero.

He is a Professor of Math, a Professor of Psychology, a research psychologist, and popular science author.

How it started?

The idea came up when an escape room needed a puzzle.

The first prototype is made of Lego blocks.

How it started?

Figure 1a, b, c: Mérö's idea came up when he was requested to create a logic puzzle for an escape room. (a) The origin of the idea is the recognition: the sum of the squares is exactly 64, which can be fitted in a $8 x 8$ square. (b) A puzzle: the blue modules cannot be moved and all the rest of the modules need to be fitted on the board without gaps and overlapping. (c) A solution. Conclusion: there are a surprisingly large number of puzzles possible.

How it started?

At first the game became an appendix of a book.

The Eightfold path: Developing intellectual flexibility.

The result of the development

Imre Kökényesi
Product developer and game designer

The result of the development

Four editions, each with 88 different challenges inside.

Best Education \& Games
2020 Buyer's Choice Award

Mondrian Blocks' connection to cognitive skills.

The following cognitive skills are help to improve the ability of learning math:

Instinct knowledge of numbers, dimensions, areas

From: The role of 2D and 3D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it?

When we mentally rotate the two shapes on the left so that they are joined at a centre y axis, which figure do they make (of the four on the right)? (From Levine CMTT, et al., 1999); see also the classic test of Shepard \& Metzler, 1971

From: The role of 2D and 3 D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it?

When asking children to think about the area of these two squares, students describe mentally rotating the left square to match the square on the right as a proof that the area of the two squares are the same

From: The role of 2 D and 3 D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it?

,The ability to mentally rotate objects in space has been singled out by cognitive scientists as a central metric of spatial reasoning (see Jansen, Schmelter, Quaiser-Pohl, Neuburger, \& Heil, 2013;
Shepard \& Metzler, 1971 for example). However, this is a particularly undeveloped area of current mathematics curricula..."

Bruce, C.D., Hawes, Z. The role of 2D and 3D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it?. ZDM Mathematics Education 47, 331343 (2015).

Mondrian 150! Mondrian Day at MoMath

Saturday, February 19 10:00 am - 5:00 pm ET (New York)

MO絭MATH
wnomat wsem or mantemancs

Friday, February 18 at 6:30 pm ET (New York)

Kristóf Fenyves Tuuli Lähdesmäki Editors

Aesthetics of Interdisciplinarity: Art and Mathematics

THE FRONTIERS COLLECTION

PLAYFUL LEARNING

in Early Childhood Education in Finland

This book is intended for all persons working with children aged 0-7 years who do the vital work, for instance, in Early Childhood Education and Care (ECEC) centres, kindergartens, nurseries and schools in all parts of the world. This book is also an excellent tool for training ECEC teachers.

The book contains over 100 practical and playful activities for children under seven year of age. It will give you concrete examples and ideas for how to implement activities with children in order for them to learn through play. The chapters of the book are based on the Finnish pedagogical practices, scientific research, and development projects of ECEC and is also based on the Finnish National Core Curriculum for ECEC.
We writers hope this book will inspire you in your work with children and promote their lifelong learning. We hope the children will receive beneficial learning experiences through the playful activities we've described - and that you, the reader, will experience happiness working and playing with the children
playful learning in Early Childhood Education in Finland elevates the pedogogical significance of play in teorning as well as children's holistic growth and well-being. This book encourages versatile and functional working methods that promote children's creativity, interaction and participotion. Our main task is to help you provide good childhood experiences and consequently o promising future for all children.

Pia Kola-Torvinen, Counsellor of Education, Finnish National Agency for
Education Education

PLAYFUL LEARNING in Early Childhood PLAYcul LeARNING in Earily chirahood
Education in Finland is a book that gets right to activities that ore useful for children. Behing the plonned playful activities are education
arofessionals who have oroved the effectivent of these activities based on specific theories and research. The book is useful in daycare centres and is needed in teacher education. It can also be an excellent guide for parents in home education The book guides children to participate and experience joy together. The book itself ploys a valuoble port in developing children's culture. Ulla Härkönen, professor emerita at the University of Eastern Finland

PLAYFUL LEARNING

in Early Childhood Education in Finland

Integrating pedagogical activity and care through play with language, art mathematics and motor skills

Pirkko Karvonen
Tuulikki Ukkonen-Mikkola
Kristof Fenyvesi
Mila Saionen
Slina Laine
Susan Helld
ellden-Paavo
Laura Taittonen

Finland International Internation
Education

Make a geometrical magic carpet, tapestry or decoration inspired by various patterns, including visual illusions! Determine the colours, think about the pattern, count, and create.

WORKSHOP 5: MODULARITY

The Design Award Winner Logifaces is the ANALOGUE GAME FOR DIGITAL MINDS.
LOGIFACES lets you train your mind, boost your creativity and challenge yourself and your friends.

