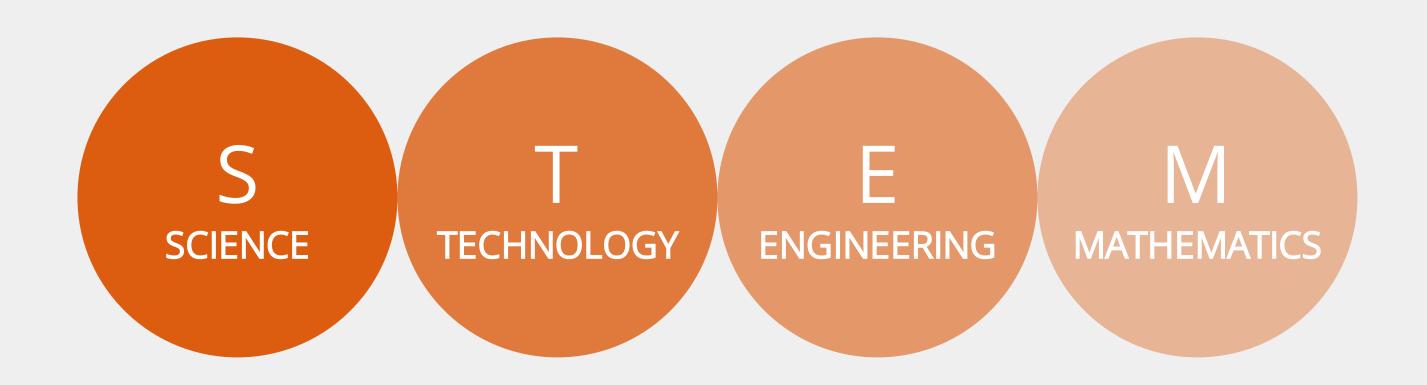


Educación STEAM y aprendizaje basado en proyectos

Jose M. Diego-Mantecón

Universidad de Cantabria



ENFOQUE INTEGRADO

En los últimos años la Unión Europea ha abogado por la implementación de un enfoque de enseñanza integrado en el que aborden conocimientos y destrezas de las disciplinas:

¿POR QUÉ ESTE ENFOQUE?

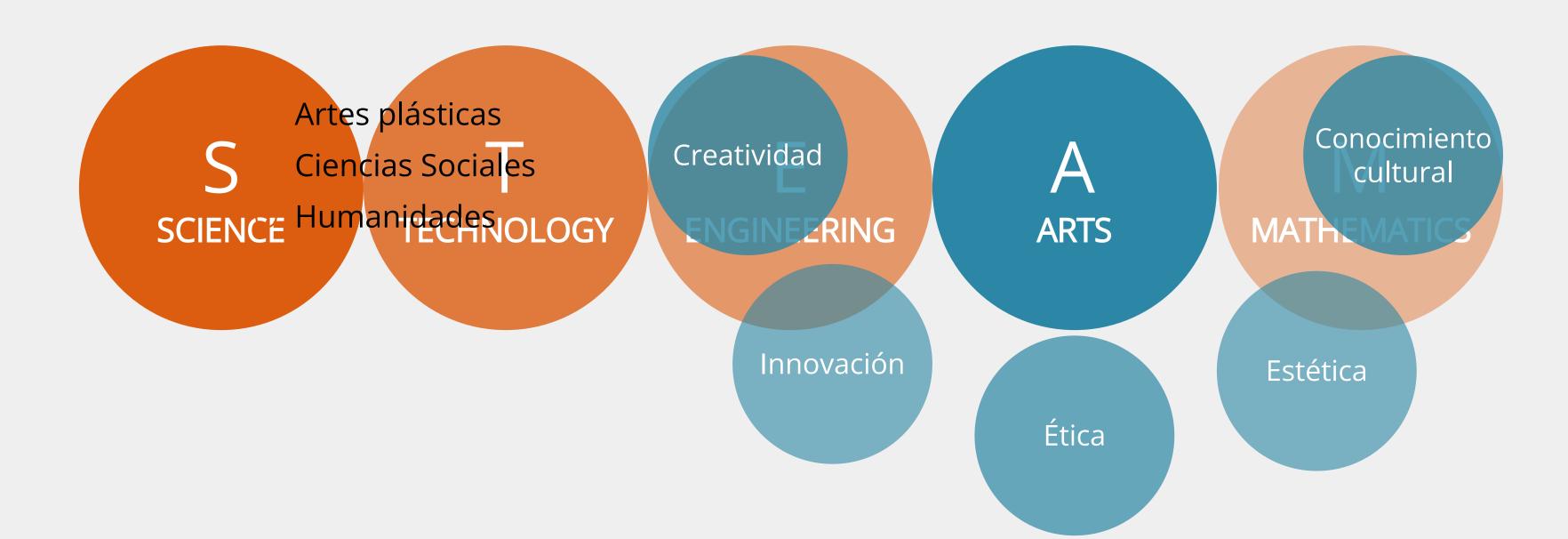
CAMBIOS SOCIEDAD

Estudios EU sugieren que hasta el 2025, los empleos en el ámbito STEM crecerán un 6.5% (CEDEFOP, 2014) El 65% de los estudiantes que acceden a primaria trabajarán en profesiones que desconocemos (ITU, 2017)

ACCIONES UE

Atraer a estudiantes a carreras profesionales del ámbito STEM

Formar a los estudiantes para las necesidades de la sociedad actual y futura


ESTADO ACTUAL El porcentaje de graduados STEM en la UE ha aumentado a un ritmo más lento que en otros lugares El 25% del alumnado español no alcanza el nivel mínimo de competencia en ciencia y matemáticas (OECD, 2019)

EDUCACIÓN STEAM

Algunos investigadores sugieren que las acciones de la UE serían más exitosas con la incorporación de las Artes

METODOLOGÍAS DE ENSEÑANZA

La educación STEAM puede ser abordada a través de distintas metodologías, por ejemplo:

- Aprendizaje basado en proyectos (ABP)
- Aprendizaje basado en el juego

ABP DEL ÁMBITO STEAM

Aprendizaje basado en problemas Aprendizaje basado en la investigación Aprendizaje basado en el diseño Aprendizaje colaborativo

Integración del contenido

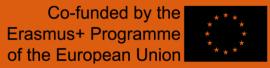
(Thibaut et al., 2018)

INTEGRACIÓN DEL CONTENIDO

Realizar conexiones entre distintas disciplinas

¿Cuántas disciplinas se deben incorporar?

- Establecer conexiones entre los conceptos y procedimientos de distintas disciplinas
- Hacer la integración explícita de varias disciplinas ya que los estudiantes normalmente no lo logran

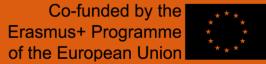


APRENDIZAJE BASADO EN EL PROBLEMA

Los estudiantes han de resolver problemas del mundo real o en contexto

Normalmente estos problemas no están bien estructurados (tienen múltiples soluciones o incluso no tienen solución)

- Aplicar conocimiento en contexto
- Hacer el contenido más relevante
- Adquirir destrezas en la resolución de problemas

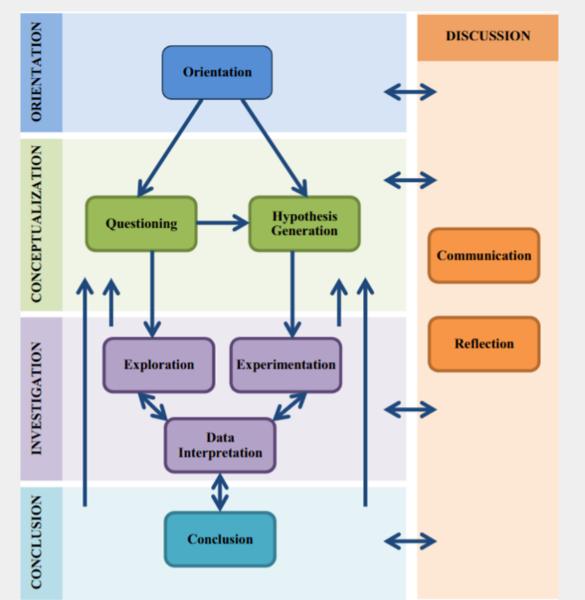


APRENDIZAJE BASADO EN LA INVESTIGACIÓN

Los estudiantes abordan formas matemáticas y científicas de investigación

(Maas & Artigue, 2013)

- Adquirir nuevos conocimientos
- Verificar ideas previas de manera práctica



APRENDIZAJE BASADO EN LA INVESTIGACIÓN

Los estudiantes abordan formas matemáticas y científicas de investigación (Maas & Artigue, 2013)

FASES DEL PROCESO DE INVESTIGACIÓN

Distintos caminos en función de las características del proyecto

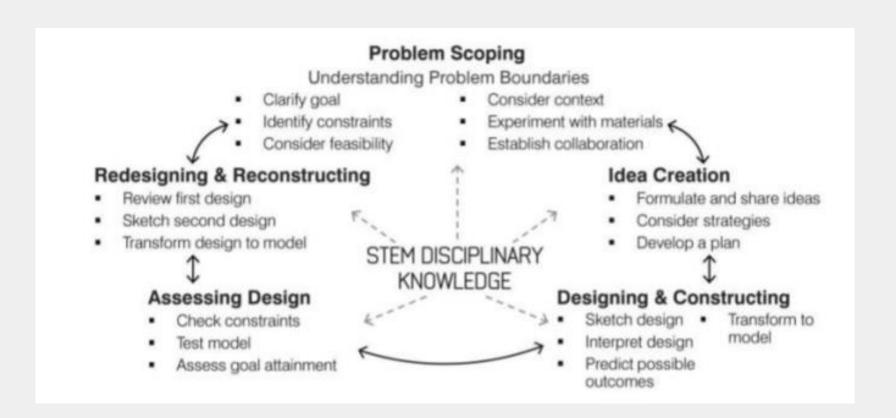
APRENDIZAJE BASADO EN EL DISEÑO

Resolver el problema implica en ocasiones diseñar un prototipo, evaluar un modelo, o construir un artefacto

El aprendizaje basado en el diseño facilita especialmente la incorporación de la ingeniería y la tecnología

OBJETIVOS

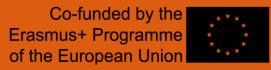
• Asentar el conocimiento de las distintas disciplinas



APRENDIZAJE BASADO EN EL DISEÑO

Los estudiantes han de identificar el problema, buscar una estrategias de resolución, diseñar un producto y evaluarlo.

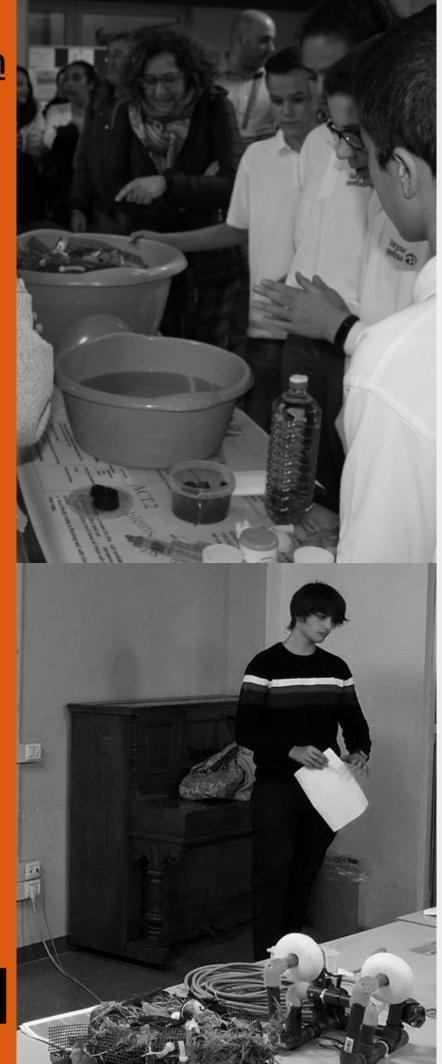
PROCESO DE DISEÑO EN INGENIERÍA



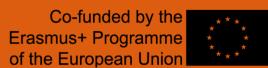
APRENDIZAJE COLABORATIVO

Los estudiantes han de trabajar conjuntamente para lograr un objetivo

- Mejorar las habilidad de trabajo en equipo
- Comprender que hay tareas que sólo se pueden alcanzar si todos los miembros del equipo participan
- Etc.



FORMATO KIKS



FORMATO KIKS

Promover la difusión de los proyectos creados en el aula mediante la presentación en encuentros con distintos tipos de público

- Durante y después de la elaboración del proyecto
- Público variado (ej. compañeros, profesores, investigadores, familias, público en general)
 - Encuentros online (ej. videoconferencias) y presenciales (ej. eventos de divulgación científica, congresos y ferias de la ciencia)

Beneficios del ABP STEAM con Formato KIKS

Incremento del rendimiento académico en Ciencias y Matemáticas

Motivación por el aprendizaje Utilidad de las matemáticas

- Comunicativas
- Emprendimiento
- Socialización
- Aprendizaje autónomo

Dominio Cognitivo

(Acar et al., 2018; Han et al., 2015)

(Diego-Mantecón et al., 2019)

mpetencias (

(Diego-Mantecón et al., 2021a; Özel, 2013)

Para lograr estos resultados es fundamental un buen diseño del proyecto y su posterior instrucción. (Diego-Mantecón et al., 2021b)

REFERENCIAS

- Acar, D., Tertemiz, N., & Tademir, A. (2018). The effects of STEM training on the academic achievement of 4th graders in science and mathematics and their views on STEM training. International Electronic Journal of Elementary Education, 10(4), 505-513. https://doi.org/10.26822/iejee.201843814
- CEDEFOP. (2014). Rising STEMs. https://www.cedefop.europa.eu/en/data-insights/rising-stems Accessed on October 30th, 2021.
- Diego-Mantecón, J. M., Arcera, O., Blanco, T. F., & Lavicza, Z. (2019). An engineering technology problem-solving approach for modifying student mathematics-related beliefs: Building a robot to solve a Rubik's cube. *International Journal for Technology in Mathematics Education, 26*(2), 55-64.
- Diego-Mantecón, J., Blanco, T., Ortiz-Laso, Z., & Lavicza, Z. (2021a). STEAM projects with KIKS format for developing key competences. [Proyectos STEAM con formato KIKS para el desarrollo de competencias clave]. Comunicar, 66, 33-43. https://doi.org/10.3916/C66-2021-03
- Diego-Mantecón, J. M., Prodromou, T., Lavicza, Z., Blanco, T. F., & Ortiz-Laso, Z. (2021b). An attempt to evaluate STEAM project-based instruction from a school mathematics perspective. ZDM Mathematics Education, 53(5), 1137-1148. https://doi.org/10.1007/s11858-021-01303-9
- English, L. D., King, D., & Smeed, J. (2017). Advancing integrated STEM learning through engineering design: Sixth-grade students' design and construction of earthquake resistant buildings. *The Journal of Educational Research*, 110(3), 255-271. https://doi.org/10.1080/00220671.2016.1264053
- Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. *International Journal of Science and Mathematics Education*, 13(5), 1089-1113.
- ITU [International Telecommunication Union]. (2017). Fast-forward progress. Leveraging tech to achieve the global goals.
- Maas, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: a synthesis. ZDM, 45(6), 779-795. http://doi.org/10.1007%2Fs11858-013-0528-0
- OECD [Organisation for Economic Co-operation and Development]. (2019). PISA 2018 Results. What students know and can do. OECD Publishing.
- Özel, S. (2013). W3 of STEM Project-Based Learning: Who, Where, and When: Revisited. In R. M. Capraro, M. M. Capraro M.M., & J. R. Morgan (Eds.), STEM project-based learning (pp. 41-49). SensePublisher. https://doi.org/10.1007/978-94-6209-143-6_5
- Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., ... & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. *Educational research review, 14*, 47-61. http://doi.org/10.1016/j.edurev.2015.02.003
- Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., ... & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. *European Journal of STEM Education*, 3(1), 2.

Gracias

Jose M. Diego Mantecón (<u>diegojm@unican.es</u>)