



# STEAMTeach Austria RESOURCES

Tony Houghton, Imam Rahmadi, and Zsolt Lavicza

# **Analysing Sporting** Performace



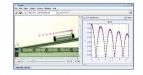
Tracker Home | Help | Share | OSP Home | Discussion Group | Email Doug

## Tracker Video Analysis and Modeling Too

## **Try Tracker Online**

Over 1 million users in 26 languages. Completely free and open source.

Latest Tracker 6 installers: Windows | Recent MacOS | Older MacOS | Linux


Upgrade installers (requires earlier Tracker 6): Windows | Recent MacOS | Linux

Installer Help Change Log Discussion Forum Tip: save your work as a Tracker Project. Easy to build and share. Easy to browse in the Library Browser.

### What is Tracker?

Tracker is a free video analysis and modeling tool built on the Open Source Physics (OSP) Java framework. It is designed to be used in nhysics education

Tracker video modeling is a powerful way to combine videos with computer modeling. For more information see Particle Model Help or AAPT Summer Meeting posters <u>Video Modeling</u> (2008) and <u>Video</u> Modeling with Tracker (2009).



Installing and using Tracker

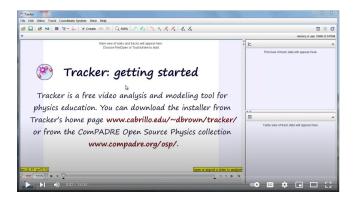
## **Tracker Features**

- Tracking: · Manual and automated object tracking with position, velocity and
- · Center of mass tracks
- · Interactive graphical vectors and vector sums.

- particles and two-body systems.
- modeling programs such as spreadsheets and Easy Java Simulations.
- video for direct visual comparison with the real world.
- Free Xuggle video engine plays and records most formats
- (mov/avi/flv/mp4/wmv etc) on Windows/OSX/Linux.
- Video filters, including brightness/contrast, strobe, ghost trails, and deinterlace filters.

**Original HP Analysing Sporting Performance** 

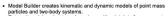
https://sites.google.com/site/cciteasp2/home


## **Analysing Sporting Performance PDF**

https://docs.google.com/document/d/1mfmUIQ2VpJ7F4eim dRNxSJLxB3vOFeaZ/edit?usp=sharing&ouid=1167851790 76121452044&rtpof=true&sd=true

HPCatalyst Academy supported Mini-Course




Analyzing Sporting Performance: a STEMx Toolkit Tony Houghton and Adrian Oldknow Cambridge Centre for Innovation in Technological Education



**Getting Started with Tracker - D. Brown** https://voutu.be/La3H7JvwgX0

- acceleration overlays and data.
- · RGB line profiles at any angle, time-dependent RGB regions.

### Modeling:



- External models animate and overlay multi-point data from separate
- · Model overlays are automatically synchronized and scaled to the

### Video

Tracker Free Software https://physlets.org/tracker/

## **3D Modeling and Printing**



Using art to create 3D models additionally inspired teachers to collaboratively create their own tools to utilize in their lessons. This showed us that using art as a motivating factor can help teachers to focus on and enjoy the opportunities of a technology and overcome resentments.



## **3D Modeling and Printing PDF**

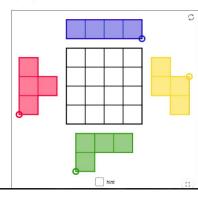
https://docs.google.com/document/d/19L2lkRpUBgH-es0HNiHE9igpIYhc7 A7/edit?usp=sharing&ouid=116785179076121452044&rtpof=true&sd=true

Co-funded by the Erasmus+ Programme of the European Union



1.1 Project Overview

| Participant age:                                                                                   | <i>No. of participants:</i>                                                | Duration:                                                                                    |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| From 20 to 65                                                                                      | Groups of 10 to 20 people                                                  | 5 to 6 hours, 2 parts                                                                        |
| Level of knowledge:<br>Basic Knowledge of<br>GeoGebra, PC user, owner<br>and user of a smartphone  | <i>No. of teachers:</i> 2 to 3 people would be perfect, one is the minimum | Type of venue:<br>A mix between a computer<br>classroom and a makerspace<br>with 3D printers |
| Learning methodologies:                                                                            | Involved disciplines:                                                      | Technological needs:                                                                         |
| Collaboratively working on                                                                         | all STEAM disciplines are                                                  | Computers, two tablets                                                                       |
| problems, task based                                                                               | involved                                                                   | internet, 3D printers                                                                        |
| Most emphasised learning<br>methodology:<br>Collaboration and problem<br>based learning, modelling | Main addressed topics:<br>3D thinking, mathematical<br>modelling           | <i>Estimated project cost:</i><br>1500 €                                                     |


| DISCIPLINE  | CURRICULAR CONTENT ADDRESSED                                                                             |  |
|-------------|----------------------------------------------------------------------------------------------------------|--|
| Science     | Temperatures, slopes, shrinking of material, chemical components of materials, glass and melting points, |  |
| Technology  | The use computers and CAD programs that are easy to use from 10 years and above                          |  |
| Engineering | The use 3D printers and create models that can be created in the real world                              |  |
| Arts        | design objects that not only fulfill a purpose but that also express one's inner world                   |  |
| Mathematics | mathematical modelling, geometry, vertices, calculus, mirroring, scaling,                                |  |

## **Student-generated Microgames**

Can you fit the four pieces into the square? Why?

## Author: Diego Lieban

### Topic: Logic, Square





Topic: Addition, Integers, Subtraction

A game to practice adding and subtracting integers

MAZZE 16 - Pikachu



## Microgames PDF:

https://www.steamteach.unican.es/wp-content/uploads/202 1/11/STEAMTeach-Activity Imam.pdf

The present activity promotes students and teachers to be able to develop microgames on the GeoGebra platform. The activity could empower them to explore arts in connection to science, technology, engineering, and mathematics. Students and teachers could start expressing their creativity by designing a very short and small game with mathematical contents. This process is followed by constructing the design on GeoGebra so that they can apply science, technology, and engineering during the game developments. The process of designing and developing microgames can be done individually or in collaboration with peers. They may also share the created games to their peers for testing.

## 1.1 Project Overview

| Participant age:                                                            | No. of participants:                                                                 | Duration:                                                         |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 15 - 45                                                                     | Groups of 3 - 5                                                                      | 5 hours                                                           |
| Level of knowledge:<br>Basic of GeoGebra, computer,<br>and programming      | No. of teachers:<br>2 - 3                                                            | <i>Type of venue:</i><br>Regular classroom<br>Computer laboratory |
| Learning methodologies:<br>Project-based learning<br>Collaborative learning | Involved disciplines:<br>Science<br>Technology<br>Engineering<br>Arts<br>Mathematics | Technological needs:<br>Paper and pencil<br>Computer<br>Internet  |
| Most emphasised learning<br>methodology:<br>Project-based learning          | Main addressed topics:<br>Mathematical games                                         | Estimated project cost:<br>500 €                                  |

## **2 CURRICULAR CONTEXT**

## 2.1 Key competences

The present activity develops students and teachers competences on digital literacy and STEAM.

## 2.2 Content

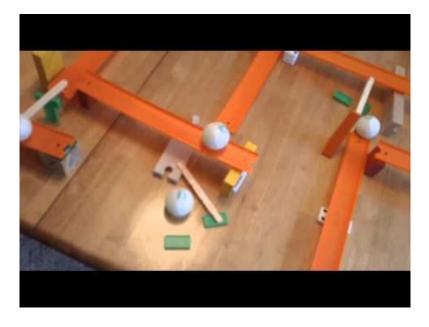
The content of this activity is described in the following table.

| DISCIPLINE  | CURRICULAR CONTENT ADDRESSED |
|-------------|------------------------------|
| Science     | Proof of game concept        |
| Technology  | Computer and programming     |
| Engineering | Coding and programming       |
| Arts        | Design and visualisation     |
| Mathematics | Mathematical contents        |



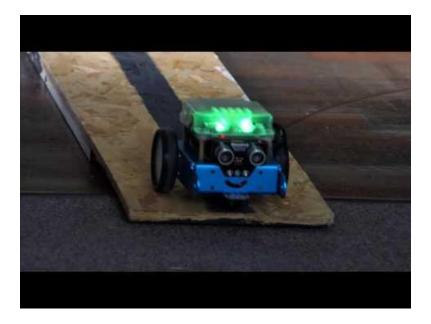
## Zero Cost Energy Scrap Bike




DIy Electric Bike From Scrap || Homemade Electric Bicycle

https://www.youtube.com/watch?v=giu\_vrSfARM

Scrapyard articles, prices...jobs, family livelihoods


https://youtu.be/nrukZNcAqnw

## **Chain Reaction**



Rube Goldberg Machine

https://youtu.be/863z\_eHGIJw



Westbridge Chain Reaction

https://youtu.be/j7dodM5Esjw